An extension for Rice’s integral and applications
نویسندگان
چکیده
منابع مشابه
On existence and uniqueness of solutions of a nonlinear Volterra-Fredholm integral equation
In this paper we investigate the existence and uniqueness for Volterra-Fredholm type integral equations and extension of this type of integral equations. The result is obtained by using the coupled fixed point theorems in the framework of Banach space $ X=C([a,b],mathbb{R})$. Finally, we give an example to illustrate the applications of our results.
متن کاملCrossings of smooth Shot Noise Processes
In this paper, we consider smooth shot noise processes and their expected number of level crossings. When the kernel response function is sufficiently smooth, the mean number of crossings function is obtained through an integral formula. Moreover, as the intensity increases, or equivalently as the number of shots becomes larger, a normal convergence to the classical Rice’s formula for Gaussian ...
متن کاملAN INTEGRAL DEPENDENCE IN MODULES OVER COMMUTATIVE RINGS
In this paper, we give a generalization of the integral dependence from rings to modules. We study the stability of the integral closure with respect to various module theoretic constructions. Moreover, we introduce the notion of integral extension of a module and prove the Lying over, Going up and Going down theorems for modules.
متن کاملA Generalization of the Meir-Keeler Condensing Operators and its Application to Solvability of a System of Nonlinear Functional Integral Equations of Volterra Type
In this paper, we generalize the Meir-Keeler condensing operators via a concept of the class of operators $ O (f;.)$, that was given by Altun and Turkoglu [4], and apply this extension to obtain some tripled fixed point theorems. As an application of this extension, we analyze the existence of solution for a system of nonlinear functional integral equations of Volterra type. Finally, we p...
متن کاملGeneralization of Darbo's fixed point theorem and application
In this paper, an attempt is made to present an extension of Darbo's theorem, and its applicationto study the solvability of a functional integral equation of Volterra type.
متن کامل